Axiomatizing Mathematical Conceptualism in Third Order Arithmetic

نویسنده

  • NIK WEAVER
چکیده

We review the philosophical framework of mathematical conceptualism as an alternative to set-theoretic foundations and show how mainstream mathematics can be developed on this basis. The paper includes an explicit axiomatization of the basic principles of conceptualism in a formal system CM set in the language of third order arithmetic. This paper is part of a project whose goal is to make a case that mathematics should be disassociated from set theory. The reasons for wanting to do this, which I discuss in greater detail elsewhere ([22]; see also [19] and [23]), involve both the philosophical unsoundness of set theory and its practical irrelevance to mainstream mathematics. Set theory is based on the reification of a collection as a separate object, an elementary philosophical error. Not only is this error obvious, it also has the spectacular consequence of immediately giving rise to the classical set theoretic paradoxes. Of course, these paradoxes are not derivable in the standard axiomatizations of set theory, but that is only because these systems were specifically designed to avoid them. In these systems the paradoxes are blocked by means of ad hoc restrictions on the set concept that have no obvious intuitive justification, which has led to the development of a large literature of attempted rationalizations (e.g., [2, 3, 6, 9, 10, 11, 12, 13, 15]). The heterogeneity of these efforts attests to the difficulty of this task. For example, from a platonistic perspective it seems impossible to give a cogent, principled explanation of why it should be legal to form power sets of infinite sets, given that unrestricted comprehension (forming the set of all x such that P (x)) is not supposed to be valid in general. Antiplatonistic attempts to justify set theory, on the other hand, appear doomed from the start because of the massive gap in consistency strength between straightforwardly antiplatonistically justifiable systems like Peano arithmetic and, say, Zermelo-Frankel set theory. The fact that modern mathematics apparently rests on this kind of basis must be considered a major embarassment for the subject. Probably the real appeal of set theory comes not from any murky philosophical defense, but rather from the role it plays as the standard foundation for mathematics. However, its concordance with normal mathematical practice is actually quite poor. Cantorian set theory postulates a vast universe of sets containing remote cardinals which bear no relation to the relatively concrete world of ordinary mathematics, where most objects of central interest are essentially countable (i.e., separable for some natural topology). Similarly, set theory as a mathematical discipline is quite isolated from the rest of mathematics, and it could hardly be otherwise

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

Axiomatizing proof tree concepts in Bounded Arithmetic

We construct theories of Cook-Nguyen style two-sort bounded arithmetic whose provably total functions are exactly those in LOGCFL and LOGDCFL. Axiomatizations of both theories are based on the proof tree size characterizations of these classes. We also show that our theory for LOGCFL proves a certain formulation of the pumping lemma for context-free languages. 1998 ACM Subject Classification F....

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009